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Abstract

The physical and mathematical basis of steady-state zones in chemical
separation systems is outlined. With certain assumptions, the general equation
for steady-state concentration profiles can be reduced to a single explicit ex-
pression of wide applicability. This expression is then used to describe zones
and layers in ten different separation techniques divided into three classes of
separation systems: (a) isoelectric focusing, isopycnic sedimentation, elutria-
tion (steady-state zones in free space); (b) field-flow fractionation, equilibrium
sedimentation, thermogravitational columns (solute layers formed at imper-
meable barriers); (c) ultrafiltration, reverse osmosis, pressure dialysis, zone
melting (solute layers formed by influx to a semipermeable barrier). The zones
in Class (a) are all found to be Gaussian while those in (b) and (c) are exponen-
tial. In all cases, zone dimensions are related to underlying transport param-
eters, and common features of the different methods are pointed out.

INTRODUCTION

It was shown in a preceding paper that the basic mass transport equa-
tions combined with the profile in chemical potential and the orientation
in flow provides a logical framework on which to classify and unify the
field of separations (/). The present paper expands on that theme by
showing that the zones and layers of solute developed in many separation
processes have much in common in both form and significance, and are
subject to the same general mathematical description.

Some common features of systems which have zones in steady transla-
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tion (chromatography, electrophoresis, rate-zonal centrifugation) were
demonstrated in the previous paper (/). However, there is a large class of
separation systems where steady-state zones or layers are formed or
approached. In some of these systems (isoelectric focusing, isopycnic
sedimentation, some types of elutriation), solute or particle zones form
a steady-state distribution, each centered around a characteristic point
along the continuum of the separation path. In other systems (field-flow
fractionation, equilibrium sedimentation, thermogravitational columns),
solute samples are forced into narrow steady-state layers against a wall.
In still other systems (zone melting, filtration, ultrafiltration, reverse
osmosis, pressure dialysis) there is a tendency to form steady-state layers
in which a constant influx of solute to the layer is matched (or can be so
approximated) by the leakage of solute through a barrier or interface.
In all the above cases the efficacy of separation depends on the concentra-
tion profile of solute in the steady-state zones and layers.

It is worth reflecting on the physical origin of steady-state conditions in
separative transport. Any narrow pulse of solute will tend to diffuse out-
ward, and its profile can only be maintained in a steady-state condition if
some transport process exactly balances diffusion. Such transport may
be induced by flow or external fields. The transport, in effect, tends to focus
solute toward a given point, keeping the solute compressed as a narrow
zone around that point.

We should note that solutes also approach a stationary distribution
across the interface of two-phase separation systems such as chromato-
graphy, countercurrent distribution, and simple extraction. These distri-
butions are generally governed by simple equilibrium relationships.
This subject has been widely explored in the literature (2, 3). We need deal
with it no further here.

THEORY

We define a steady-state zone or layer as one in which concentration
¢ remains constant with time

dc/dt = 0 )
Another expression for dc/dt arises from the equation of continuity (4, 5)
Oclot = =V-J )

where J is the flux density. All the methods under discussion involve
transport that can be approximated as one-dimensional. We therefore
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take the axis of transport as coordinate x. The equation of continuity then
becomes

de/ot = —dJjox = 0 3)

This equation requires that J must equal the constant J, at all points
along the x axis, although J can in theory vary with time.

The two contributions to J—translation and diffusion-—can be expressed
by the general transport Eq. (1):

J = We — Dy Ocjox €]

in which translational velocity W is equal to the sum of velocity U induced
by external fields and flow velocity v:

W=U+nv (%)

Coefficient D represents the sum of all contributions to effective diffusion.
When J,, is substituted for J in Eq. (4) and the latter rearranged, we obtain
the form

¢ — (Jo/ W) = (Dy/ W) dc/dx 6)

This is a linear differential equation of first order which admits of a formal
solution, which we show in the Appendix. The solution, unfortunately,
consists of integrals that can acquire some complexity when J, is finite
and Dy and W vary in an arbitrary way with x. Under most circumstances
it is physically reasonable to impose certain restrictions (below) on Jy,
Dy, and W for simplification. Under these circumstances a simpler (and
more physically direct) approach is available which yields the principal
results and thus demonstrates the essential similarities between the
separation methods.
We first define a new concentration scale

¢'=c— J/W M

such that ¢’ equals the left-hand side of Eq. (6). The derivative of ¢’ with
respect to x is simply

0c'|ox = écldx 8)
providing 0(J,/W)/éx = 0. The latter is valid either when
Jo=0 %)

or (since Jy, if finite, is constant with respect to x, Eq. 4),

W = constant (10)
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When Egs. (7) and (8) are substituted into Eq. (6) we get
¢ =Dy W)oc'lox (1)

When the variables are separated and the resulting equation integrated
between 0 and x we obtain the equation

In (c'feg) = j:(W/zm dx (12)

in which ¢’ and ¢; are the newly defined concentrations at positions x
and zero, respectively. When these concentration terms are replaced by
the corresponding terms ¢ and ¢, using Eq. (7), we obtain the following
explicit equation for concentration:

In (e = Jo/ W)(co — Jo/ W)] = f(W/DT) dx (13)

It should be noted that this equation is based on the separation of variables
in Eq. (11) in which it is assumed that the ratio W/Dr may be a function
of x but not of ¢'. For high concentrations this assumption may fail and
a more involved integration may be required. In this light, Eq. (13) must be
regarded as a limiting equation valid at low concentrations.

Equation (13) is the solution sought to Eq. (6). This solution is subject
only to the two conditions that J,/W is a constant (Eqs. 9 and [0) and
W/Dr is independent of ¢.

We now assume, for simplicity, that D, is a constant independent of x.
This leaves W as the sole variable in the integrand of Eq. (13). We can
proceed generally by expanding W in a (Taylor’s) series around x = 0:

W=(20+a‘;x+622x2+'“ (14)

Depending on circumstances (detailed later), we find the terms of either
zeroth or first order dropping out. Higher order terms can be reasonably
neglected. Thus in all cases transport velocity W can be written in the
simple form

W= —ax" (15)

where n = 0 or 1. Equation (15) is written in such a way (consistent with
the steady state) that all the transport described by W is directed toward
the position x = 0. The negative sign reflects the focusing motion which
brings solute back toward x = 0 whenever x>0. We note that the need
to keep Jo/ W constant requires either J, = 0 or n = 0, the latter so that
W is a constant, Eq. (10).
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With Eq. (15) and the assumption of constant diffusivity Dy, the integral
of Eq. (13) acquires the form —ax""!/D,(n + 1). When this form is
substituted back into Eq. (13) and the latter rearranged, we get

c—JO/W__ex <_ ax"*1 ) 16
o — T =P\ "D T ) (16)

which leads us to the result that steady-state zones tend to acquire some
kind of exponential distribution, the form depending on whether n = 0
(simple exponential) or # = 1 (Gaussian). The Gaussian of the latter case
is largely unrelated to the Gaussians formed in uniform translation, as
in chromatography and electrophoresis.

APPLICATIONS

There are three classes of separations in which steady-state zones are
described to a good approximation by Eq. (16). These are discussed
briefly below.,

Isoelectric Focusing, Isopycnic Sedimentation, Elutriation (Steady-State
Zones in Free Space). These are methods in which the different solutes
are each forced toward a unique position along the coordinate axis of
the system (6). Even after solute has accumulated in the designated region,
it continues to diffuse outward in opposition to the focusing force, estab-
lishing a steady state (see Fig. 1). For steady-state conditions we can
write J, = 0 because no solute enters or leaves the zone after its formation.

Generally, for such zones we can assume D, = constant. Furthermore,
for each zone we need retain only the first-order term of the series expan-
sion, and we thus write W = —ax, which is equivalent to Eq. (15) with
n = 1 (6). The linearity of the expression W = — ax suggests that a linear
restoring force or its equivalent is acting on the solute molecules or
particles to force them toward the origin, x = 0. The origin and nature of
this force for particular methods has been discussed (6).

The above conditions reduce Eq. (16) to the form

c ax?
= = 17
o P < 2DT> an
which is a Gaussian profile with variance
6? = Ds/a (18)

The constants D; and a can usually be estimated on physicochemical
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Diffusion

Transport
toward
center

(focusing)

Fia. 1. Steady-state Gaussian zone formed in isoelectric focusing, isopycnic

sedimentation, and elutriation by the opposing interplay of a focusing force

and diffusion. Different components focus at separate locations to give separa-
tion.

grounds. Thus zone width can be calculated, and resolution parameters
estimated (6).

Expressions equivalent to Eqgs. (17) and (i18) have been obtained for
isoelectric focusing and density gradient centrifugation (along with
several hypothetical steady-state methods) (6). However, the earlier treat-
ment did not include a generalization to systems such as elutriation with
finite flows. In this light, the scope of Egs. {17) and (18) is rather broad.
It is not nearly as broad as the precursor expressions, Egs. (13) and (16),
because the latter can be applied to many other separation processes as
well. Most importantly, Eq. (16) can be applied to those cases in which
solute accumulates in a steady-state layer against a wall or barrier. These
are considered in the two categories below.

Ficld-Flow Fractionation, Equilibrium Sedimentation, Thermogravita-
tional Columns (Solute Layers Formed at Impermeable Barriers). The field
or gradient applied laterally to a field-flow fractionation (FFF) channel
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forces solute toward a wall which the solute molecules cannot penetrate.
The solute is confined to a narrow region adjacent to the wall by the wall’s
surface, which it cannot pass, and the focusing force, which prevents its
escape toward the center of the channel. The solute soon establishes a
steady-state layer (polarization layer) in which outward diffusion balances
the steady inward drift due to the field. The structure and dimensions
of this layer determine the behavior and resolution characteristics of the
solute in the separation process (7, §). (As with other methods, the steady-
state in FFF is a condition closely approached but never reached. In
FFF, a small but systematic departure from equilibrium is responsible
for zone spreading.)

Similar layers are formed in thermogravitational columns and at the
bottom wall of a centrifuge tube when the sedimentation process is allowed
to approach equilibrium (providing pelleting does not occur).

For the above cases the appropriate assumptions are J, = 0, D; =
molecular diffusion coefficient D (usually a constant), and W = —|W|
(a constant). Quantity W is written in its absolute value form because it
is negative: displacement occurs along the negative coordinate axis toward
the wall. Since W is constant, the exponent # of Egs. (15) and (16) is zero,
and the resulting distribution is a simple exponential rather than
a Gaussian. Equation (16) yields the form

c —|Wix —x
= exp( D > = exp (—l-> (19)
where the effective mean layer thickness / is given by
D D
1 = ——— =
R (20)

Thus the solute layer is characterized by quantity /, and the magnitude of
! controls component migration and column efficiency in FFF (8). Equa-
tion (20) covers most forms of FFF in which an external field yields a
finite U and a zero v, and flow FFF in which v is finite and U = 0, and
any possible combination of the two.

Ultrafiltration, Reverse Osmosis, Pressure Dialysis, Zone Melting
(Solute Layers Formed by Influx to a Semipermeable Barrier). In the
filtration-type methods (the first three techniques listed above), solute
accumulates in a thin polarization layer at a barrier or m2mbrane in much
the same way as it does in FFF or equilibrium centrifugation. However,
there are several complications. First, fresh solute is constantly brought
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into the layer by the flow of liquid toward and through the filter. This
steady influx of solute can be described by a finite flux density term J,,.
Second, solute can be removed from the outer reaches of the layer by
stirring or by transverse flow in a thin-cell device (9). Third, the membrane
or barrier may be leaky and allow the transmission of a portion of the
solute, profoundly affecting the attempted separation. In fact, one reason
for the importance of the solute layer structure is that membrane leakiness
depends on the magnitude of the solute buildup at the membrane surface.

A similar situation exists in zone melting where a molten zone passes
through a solid bar gathering up the solid’s impurities (/0). The trailing
solid-liquid interface acts like a filter in differentially rejecting part of the
impurities or solutes. The rejected solute load then accumulates in a thin
layer next to the advancing interface. The amount of solute material
eventually recaptured and refrozen into the solid (equivalent to the leakage
of a membrane)—and thus the residual impurity content of the recrystal-
lized solid—depends again on solute buildup.

(It makes no important difference in filtration or zone melting whether
the solute-rejecting surface advances on a stationary liquid solution,
or whether liquid advances on a stationary surface, since only the relative
motion is important. Usually, in zone melting, the zone and thus the
interface is stationary, and the solid bar and the molten liquid are in
translation.)

With the initiation of the filtration or zone melting process, solute
begins to accumulate at the barrier and continues to build up in the
solution until one of several things happens: precipitation or gelation
occurs, the procedure is stopped, or stirring, leakage, or transverse flow
removes solute as rapidly as it arrives. It is not our object to describe all
of these special cases here. Instead, we will discuss a limiting steady-state
model in which solute removal occurs at the same rate as solute influx.
The layer structure calculated on this basis is a reasonable approximation
for the layers formed when removal is negligible or when removal occurs
by different mechanisms. Every aspect of the separation—from plausible
operating conditions (flow rate, duration, pressure, stirring methods,
cell geometry) to the resulting level of concentration or purification—
depends on the nature and form of this layer.

The limiting equations applicable at low concentrations are obtained
by assuming a finite but negative J, which we write as —|J;|, where |J,]
is the influx, Dy is a constant (which equals molecular diffusion coefficient
D if there is no stirring), and W = —{v|, another constant equal to the
velocity of the liquid relative to the surface. The absolute value forms
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are used to allow the positive coordinate axis to point into the flow from
the barrier or interface to which we assign coordinate position x = 0.
With the above assumptions, Eq. (16) becomes applicable and yields

¢ — [ol/lvl < IUIX>

————— = eXp | ——— 21

c = ol = P\ 7D, @D
Writing ({/5/|v]) as Jo/v (both terms are negative and the ratio is therefore
positive) and rearranging, we get

Jo Jo (24
c=—+ <c0 —;) exp(-——l)—T) 22)

We note that the resultant concentration profile is a simple exponential
superimposed on the constant background concentration of the incoming
solute, Jo/v (see Fig. 2). (The background concentration, of course, can
remain constant only so long as the supply of the solute-solvent mixture
lasts. In practice the duration of the supply is finite, but typically this
duration will greatly exceed the time constant for forming the steady-state
layer, and Eq. 22 will be little disturbed.) The effective thickness of the
exponential component, / = Dy/|v|, is seen to be identical in form to that
found for FFF, Eq. (20).

The amount of excess solute E (measured in moles per unit area) that
can accumulate in the polarization layer is simply the excess concentra-
tion above that of the background solution, ¢ — Jy/v, integrated over

\

Barrier Exponential zone

rar’y L

filter

N

\

Background
concentration

C:JO/V
¢c=0

FiG. 2. Formation of exponential zone superimposed on a background of
constant concentration for solute piling up behind a partially rejecting barrier
like a membrane.
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coordinate x:
E = j. (¢ — Jy/v) dx (23)
0

With the substitution of Eq. (22) for ¢ and integration, Eq. (23) yields
E = o] (co — U) (24)

Usually the separation is effective in proportion to £ because E represents
either the amount of contaminant removed if the rejected solute is undesir-
able, or the amount of product concentrated if the solute is desirable.
However, the degree to which the concentration at the interface ¢, can be
increased to gain higher E values is limited because high ¢, values augment
leakage, resistance to flow, and the risk of precipitation. Consequently,
to increase E, efforts are generally made to increase effective diffusivity
Dy, best done through stirring or convective processes. Thus these pro-
cesses become important considerations to effective operation.

We note that different removal mechanisms will tend to deplete solute
from different regions of the solute layer, thus disturbing the steady-state
profile in different ways. Continuing solute influx also upsets the steady
state. The degree to which steady-state conditions are maintained depends
on how rapidly the layer repairs itself after being disturbed. The “relaxa-
tion time” for repair is approximately the time needed for transport
by either diffusion or flow over distance /: ~ D/v*. Usually the relaxation
fime is short and the steady-state approximation is satisfactory for all
practical purposes. The same considerations apply to FFF where, once
again, steady-state conditions are closely approached by virtue of the rapid
relaxation to the steady-state profile.

The disturbance of the steady state and other topics common to the
separation methods discussed above could be pursued at much greater
length. However, the pursuit of detail is beyond the scope of this paper,
where our purpose is limited to showing the close relationship of diverse
methods.

CONCLUSIONS

The approach developed in this paper applies to 10 or so different steady-
state separation methods. A single expression, Eq. (16), approximates
the solute profile in all these methods. All the solute layers reduce to only
two forms: Gaussian and exponential. The variance of all the Gaussians
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is given by a single general expression, Eq. (18). The effective thickness
[ of the exponential layers is also given by a single expression, Eq. (20).
The near-identity in the mass transport equations for these various tech-
niques and the remarkable resemblance of the results emphasizes the deep
unity that runs through the separations field. This unity is not commonly
recognized. There is good reason to believe that the plight of the separa-
tion scientist and technologist confronting so many seemingly unrelated
techniques and subtechniques would be considerably relieved by the
recognition and use of the common thread running through such large
groups of methods.

APPENDIX
Equation (6) can be written in the form
de W A

a}*"ﬁ;c"‘—-‘ —’D—T (A'l)

If WDy and Jo/D; are functions of x but not of ¢, we can use the integrat-
ing factor

e {W/Dr)dx (A-2)
which leads to the general solution
¢ = e;(W/Dﬂdx[j:_J_O e I WIDTIx gy 4 k:l (A-3)
T

where & is an integration constant. If W is constant, the integral inside
the square brackets reduces to

J.%[T_O_ e~(W/DT)dx dx = (JO/ W)e—Wj'dx/DT (A-4)
Since this integral reduces to zero when J, = 0, we can broaden our
assumption in which W was assumed constant to one requiring only that
the ratio J,/ W be constant. The latter is fulfilled either by J, = O or W =
constant (Egs. 9 and 10), corresponding to our earlier assumption.

With the substitution of Eq. (A-4) into Eq. (A-3), the latter can be
rearranged to

J -
¢ = <—V2V> oS WIDTYx o~ W i dx/DT 4 Joo S W/ Dr)dx (A-5)

The first term on the right reduces to zero if J, = 0, and to J,/Wif W =
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constant: in either case it can be written as J,/W. Thus Eq. (A-5) becomes

J
¢~ g = kel (VP (A-6)

If the integral is written as the definite integral, j§ (W/D;) dx, this integral
will vanish at x = 0, at which point we write for concentration ¢ = ¢,.
Equation (A-6) thus reduces to ¢, — (Jo/ W) = k at this point, which estab-
lishes the value of k. The substitution of this k& back into Eq. (A-6) leads to

(c — Jo/W) §% (W/Dr)dx
(co —do¥) ~ ¢ (A7)

which is the same as Eq. (13).
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